Mixed aggregation functions for outliers detection
نویسندگان
چکیده
منابع مشابه
islanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولAggregation functions: Construction methods, conjunctive, disjunctive and mixed classes
In this second part of our state-of-the-art overview on aggregation theory, based again on our recent monograph on aggregation functions, we focus on several construction methods for aggregation functions and on special classes of aggregation functions, covering the well-known conjunctive, disjunctive, and mixed aggregation functions. Some fields of applications are included.
متن کاملHierarchically Clustered LSH for Hierarchical Outliers Detection
In this work we introduce hierarchical outliers that extend the notion of distance-based outliers for handling hierarchical data domains. We present a novel framework that permits us to detect hierarchical outliers in a consistent manner, providing a desired monotonicity property, which implies that a data observation that finds enough support so as to be disregarded as an outlier at a level of...
متن کاملMining Common Outliers for Intrusion Detection
Data mining for intrusion detection can be divided into several sub-topics, among which unsupervised clustering (which has controversial properties). Unsupervised clustering for intrusion detection aims to i) group behaviours together depending on their similarity and ii) detect groups containing only one (or very few) behaviour(s). Such isolated behaviours seem to deviate from the model of nor...
متن کاملIdentifying Outliers via Clustering for Anomaly Detection
Detecting known vulnerabilities (Signature Detection) is not sufficient for complete security. This has raised recent interest in Anomaly Detection (AD), in which a model is built from normal behavior and signification deviations from this model are flagged anomalous. However, most AD algorithm assumes clean training data, which could be hard to obtain. Our proposed algorithm relaxes. For this,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Intelligent & Fuzzy Systems
سال: 2021
ISSN: 1064-1246,1875-8967
DOI: 10.3233/jifs-200278